The “Lean Startup” is killing growth experiments

Over the past few years, I’ve seen the “Lean Startup” grow to biblical proportions in Silicon Valley. It has introduced a lot of clever concepts that challenged the old way of doing business. Even Enterprises such as GE, Intuit and Samsung are adopting the “minimum viable product” and “pivoting” methodologies to operate like high-growth startups. However just like any dogma, the “lean startup” when followed with blind faith leads to a form of obscurantism that can wreck havoc.

Understanding “activation energy”

A few weeks ago, I was discussing implementing a growth experiment with Guillaume Cabane, Segment’s VP of Growth. He wanted to be able to pro-actively start a chat with Segment’s website visitors. We were discussing what the MVP for the scope of the experiment should be.

I like to think of growth experiments as chemical reactions, in particular when it comes to the activation energy. The activation energy is commonly used to describe the minimum energy required to start a chemical reaction.

The height of the “potential barrier”, is the minimum amount to get the reaction to its next stable state.

In Growth, the MVP should always be defined to ensure the reactants can hit their next state. This requires some planning which at this stage sounds like the exact opposite of the Lean Startup’s preaching: “ship it, fix it”.

The ol’ and the new way of doing

Before Eric Ries’s best seller, the decades-old formula was to write a business plan, pitch it to investors/stakeholders, allocate resources, build a product, and try as hard as humanly possible to have it work. His new methodology prioritized experimentation over elaborate planning, customer exposure/feedback over intuition, and iterations over traditional “big design up front” development. The benefits of the framework are obvious:
– products are not built in a vacuum but rather exposed to customer feedback early in the development cycle
– time to shipping is low and the business model canvas provides a quick way to summarize hypotheses to be tested

However the fallacy that runs rampant nowadays is that under the pretense of swiftly shipping MVPs, we reduce the scope of experiments to the point where they can no longer reach the “potential barrier”. Experiments fail and growth teams get slowly stripped of resources (this will be the subject for another post).

Segment’s pro-active chat experiment

Guillaume is blessed with working alongside partners who are willing to be the resources ensuring his growth experiments can surpass their potential barrier.

The setup for the pro-active chat is a perfect example of the amount of planning and thinking required before jumping into implementation. At the highest level, the idea was to:
1- enrich the visitor’s IP with firmographic data through Clearbit
2- score the visitor with MadKudu
3- based on the score decide if a pro-active sales chat should be prompted

Seems pretty straightforward, right? As the adage goes “the devil is in the details” and below are a few aspects of the setup that were required to ensure the experiment could be a success:

  • Identify existing customers: the user experience would be terrible is Sales was pro-actively engaging with customers on the website as if they were leads
  • Identify active opportunities: similarly, companies that are actively in touch with Sales should not be candidates for the chat
  • Personalize the chat and make the message relevant enough that responding is truly appealing. This requires some dynamic elements to be passed to the chat

Because of my scientific background I like being convinced rather than persuaded of the value of each piece of the stack. In that spirit, Guillaume and I decided to run a test for a day of shutting down the MadKudu scoring. During that time, any visitor that Clearbit could find information for would be contacted through Drift’s chat.

The result was an utter disaster. The Sales team ran away from the chat as quickly as possible. And for a good cause. About 90% of Segment’s traffic is not qualified for Sales, which means the team was submerged with unqualified chat messages…

This was particularly satisfying since it proved both assumptions that:
1- our scoring was a core component of the activation energy and that an MVP couldn’t fly without it
2- shipping too early – without all the components – would have killed the experiment

This experiment is now one of the top sources of qualified sales opportunities for Segment.

So what’s the alternative?

Moderation is the answer! Leverage the frameworks from the “Lean Startup” model with parsimony. Focus on predicting the activation energy required for your customers to get value from the experiment. Define your MVP based on that activation energy.

Going further, you can work on identifying “catalysts” that reduce the potential barrier for your experiment.

If you have any growth experiment you are thinking of running, please let us know. We’d love to help and share ideas!

Recommended resources:
https://hbr.org/2013/05/why-the-lean-start-up-changes-everything
https://hbr.org/2016/03/the-limits-of-the-lean-startup-method
https://venturebeat.com/2013/10/16/lean-startups-boo/
http://devguild.heavybit.com/demand-generation/?#personalization-at-scale

Images:
http://fakegrimlock.com/2014/04/secret-laws-of-startups-part-1-build-right-thing/
https://www.britannica.com/science/activation-energy
https://www.infoq.com/articles/lean-startup-killed
https://en.wikipedia.org/wiki/Activation_energy

Achieving personalization at scale in B2B sales

I was trying to write a title as pompous and with as many buzz words as possible and I do believe I’m close. Who knows we might even get featured on TechCrunch with these ramblings on how “big data” is enabling the ultimate phase of the B2B sales & marketing revolution…

Over the past few weeks at MadKudu, we’ve run a thorough retrospective on 2016 to flesh out what we’ve learnt, which hypotheses were validated, which were proven wrong.
The exciting learning is that we’re onto something big, something HUGE!
We’ve validated the fact that lead prioritization enablement was commonly sought. But more importantly we’ve realized that lead scoring solutions as they exist today are only duct-tape on a broken process. Since companies aren’t able to handle personalized onboarding at scale, they reduce the scale by focusing on a subset of leads to manually personalize the experience for. Welcome to the world of the inbound SDR. MadKudu is set to change this and bring us one step closer to completing the marketing & sales revolution by operationalizing personalization (channel, message…) at scale.
In essence the main actionable learning is that operationalization is 10x more valuable than enablement. It’s actually a completely different sport.

The Sales & Marketing Revolution

The term revolution is mainly used to describe an overthrow of an order in favor of a new one. But the root of the words tie back to the concept of going full circle. So when we talk about the sales & marketing revolution we mean we’re getting back to a previous state. While we’ll dedicate a specific post to this topic, a high-level history of marketing would go as such:
– Before the industrial revolution, people bought from local stores and suppliers. This was the era of one-to-one personalization of the product to the customer’s needs.
– The industrial revolution changed everything, the product was now king. Our newly discovered ability to mass produce meant we needed to find ways to ship these products. This started the era of the marketing mix’s 4P (product, price, promotion, placement) in marketing.
– In more recent days, the rise of the internet 2.0 marked the rise of the SDR. With online products being available for billions of people and marketing strategies still focusing on bringing in as many prospects as possible, there was a new need to qualify potential customers.
– The “big data” revolution. Data science has started powering personalization and relevance at scale in eCom marketing for a few years now. Amazon led the charge with its recommendation engine and many companies have since then applied data science to make the B2C sales experience more relevant (at AgilOne, we did a lot of this). The shift from the 4Ps towards the 5Cs is another illustration of this trend of putting back the customer at the center of marketing activities.

What “big data” brings to Sales

There is a common misconception that big data equates huge quantities of data and thus is more appropriate for marketing than sales and for B2C rather than B2B. But there are really 3 aspects to big data:
– massive data sets (high volume)
This is what companies like facebook, google deal with. We’re talking trillions of records of data to process. The main challenge here is scalability and is only seen in B2B2C or B2C companies.
– fast data (high velocity)
This is what real time analytics systems deal with. Recommender systems, trading algorithms are great examples of systems dealing with high velocity data.
– complex data sets (high variety)
Here’s the least sexy and known aspect of the lot. B2B companies generate big data with customer records coming from sales data, product usage, customer records, support tickets… While real-time analytics and scalability are challenges the hard nut to crack is the identity layer or combination of all the information in a comprehensible data set. Machine Learning algorithms will only ever be as good as the input they are fed.

Why is B2B Sales broken

The final aspect has been ankylosing the B2B space and has thus become a great source of innovation. Companies are spending billions of dollars to get their data together (getBirdly, Jitterbit), stitching it together (leanData, AgilOne). The hardest part though remains in rendering the data actionable. This is where Big data can help reach the holy grails of sales and marketing: “personalization to foster relevance, at scale”.
Lead scoring tools so far have been built with this in mind. They leverage the multitude of data points available to automate -to some extent- the qualification historically run by SDRs.

BANT Qualification process:
B => mainly firmographic data to determine if the account would have budget for your top tier pricing
A => mainly demographic to determine how close is this person to having a budget line item for your product
N => mainly firmographic to determine if the account likely to be a successful user of your product or at least have a need for it
T => mainly behavioral to determine if the account’s aggregated behavior is indicative of a strong likelihood to purchase your product in the near future.

And so this is where big data has been helping so far. Lead scoring solutions have been doing a great job at getting SDRs to focus on a small subset of leads that they can then write personal emails to through bulk email solutions like Yesware or Salesloft…

Where this approach falls short is that sending emails manually don’t make them personal, let alone relevant. We all receive tens of emails like this every day:
right_person_email

From cartography to self-driving cars

A couple weeks ago, Guillaume Cabane, VP Growth at Segment, made a striking analogy between cartography and B2B sales. Cartography is the representation of the overall landscape of your leads. It is used to determines the routes you need to follow to reach your destination. This is your initial ideal customer profile analysis. The GPS is an automated way of telling how to get to your destination. This is lead scoring as we know it today. The self-driving car is build upon a GPS and executes the commands reliably and automatically. This is the future of B2B sales, the idea of a “software SDR”.
In essence, the great opportunity to seize in 2017 lies in realizing the era of the GPS as a stand alone tool is over. We are now heading into a world of self-driving cars.
Not only are we convinced about this, the early tests we’ve been running so far are encouraging. Our software SDR has consistently outperformed by at least 66% regular SDRs on the amount of qualified demos booked. Not only were we generating more meeting, we also free-ed up time for the sales team so they could focus on what they do best: adding value to prospects whom we’ve engaged with them.

Here’s to 2017, year of the true sales automation!

Image credit : A future lost in time

How To Identify Your Ideal Customer Profile (Podcast)

Last week I had the pleasure of being invited to speak about B2B SaaS Sales on Livestorm’s podcast. In the interview I discussed how, at MadKudu, we led our research for our Ideal Customer, how we’ve kept on refining it and how it helped shape our business.

Here’s the full interview :

 

And here’s the transcript (a big thank you to Livestorm)

Hi Francis, first, could you tell us what is MadKudu and how you help other SaaS businesses improve their sales process and grow?

MadKudu is a predictive analytics solution. We help sales team prioritize leads. We focus solely on B2B SaaS companies, we work with companies like Segment, Mattermark and Pipedrive.

Those companies love us because they come to realize that in order to be successful their sales team need to be helpful and in order to be helpful they need context.

We provide that context on who’s talking to them and why they are talking to them. We provide all the customers data that is available on the behavioral side as well as third party data with systems like Clearbit.

We provide the triggers to sales team in order to reach out properly and maximize their efficiency.

From what I understand, you are one step ahead of traditional lead scoring where all sales interactions are based on specific lead scoring activity such as, for example, “has downloaded a PDF”.

If you think about it, lead scoring is more of a methodology to make sure that you have leads prioritized. The traditional way of doing this is: you pick certain events and certain criteria and assign point to them based on your preconception of how it is important to do one or the other.

Where predictive comes into play is figuring out what number points should be allocated to certain events, or to having certain behaviors.

The three founders of MadKudu have backgrounds in engineering and mathematics and we saw the huge opportunity to stop having preconceived ideas of what criteria were needed to consider a lead to be qualified.

We use historical data to find out what truly is important.

The predictive side is one way of doing lead scoring. It is more tailored to every business out there.

Right, but in order to get predictive, you need to have a certain amount of historical data, including “win moments” such as an upgrade, as well as “lose moments” such as churn events.

Not every company has enough data on the conversion side in order to run statistical models. So, either you have this amount of conversion events, that is top of the funnel events, or you can use “proxys”.

Basically, you can pick other events further down the funnel. Those users with less data can look at their activation rate. So, if you are a CRM it could be uploading your contacts. And this become your “win event” and you can base your model on that.

Then as you get more volume you can iterate on that “win event” and pick another criteria.

So, companies with a certain amount of data can use MadKudu but if, younger companies can also use your predictive analytics based on their activation rate, then does it mean that all companies can use MadKudu?

It’s a very relevant question to the topic today. Not every company is a good fit for MadKudu.

We define a very narrow customer profile to make sure we execute well and deliver maximum value to them.

First, if you have a low volume of data, our statistical model is maybe the way to go.

Maybe you should first make assumptions, test them and then refine your process. Up until you get to a certain point where the amount of leads requires a more complex statistical modeling.

That’s why our typical sweet spot customer have 5–30k new leads coming in every month. Which is a pretty high volume where statistical modeling starts shining.

What are the other parameters that you look at for your Ideal Customer Profile (ICP)? Do you have empirical data that helped you shape your ICP based for example on deal velocity?

Defining your ideal customer profile is the most important thing for an early stage startup. If you think about it, if you aggregate all you ideal customer profile you have your target market, that is the market you want to deliver your product for.

You have to define your product based on the market you are going for. And that’s a pretty big change lately.

200 years ago your local butcher knew exactly how you wanted your meat, a 1:1 personalized approach where the product would be defined by your needs.

Then came the industrial revolution where we became able to mass product, and it was all about how do I ship and distribute the product. That is all the marketing standards such as the 4p’s. It was all driven by “how do I ship this product”.

Today with all the data that is available, with the ability to create a product and distribute it at a very low price, we’re back at this initial stage of people wanting to build product for specific targets. It’s all about the customer. It puts back the ideal customer at the center of every single strategy.

So, you should start with early assumptions of who is your ideal customer that you want to solve a problem for. You want that to be narrow very early on.

If you take the BANT framework (Budget, Authority, Need and Timing), you want to focus on Budget and Need first. Those are the two parameters that will help you build a company.

Need is what will help you generate traffic to your website. If you have the right need you will be able to have a message that resonates and engage people. Once they are engaged you will be able to talk about budget.

When we were at Techstars, our managing director told us “call a hundred of these companies that you define as your ideal customer profile, don’t try to sell them anything, see if the need you are trying to solve is actually there”.

That started generating traffic, people got interested, then we were able to look at the data at how the message resonated with smaller categories than what we had defined with the ICP.

Then we closed our first clients and we refined our definition of the ICP more and more to the point where it was super precise.

We started aiming B2B SaaS that had raised an A round in the past 6 months, that had an Alexa rank lower than a 100 and integrations on their website such as Mixpanel, KISSmetrics or Segment.

So, when we reached out to them it was really relevant and often on point. We had a huge reply rate.

So everything started from those hundred calls, then you refined your ICP, until you reached this level of precision. What specific data points did you focus on?

At that time, we were focusing on improving our trial conversion rate and selling to B2B SaaS appeared to be extremely important. Also, you had to use a technology that we could connect (e.g Segment, Mixpanel, or KISSmetrics.).

Behavioral data and declarative data must be tied together. They bring different kind of information.

I recommend you watch the Ted talk from Hans Rosling called The best stats you’ve ever seen. The main point is that, in this world, all the data is available. The big issue is that we drive our decisions on preconceptions.

We have this customer, very similar to Clearbit, that monitors companies’ growth. They had a definition of their ICP being mostly VCs. The sales team was to trained to deal with those profiles, they knew the playbook to convert them.

What we found in the data is that they had a huge amount of conversion in the recruiting space. They did not understand it and the sales team was constantly rejecting those leads. We realized that those HR companies were interested in spotting companies that were not growing in order to find sources of engineers for their own clients.

There was a great use case and they had not trained the sales team to sell to those companies.

Then, this is where behavioral data come into play. You want to make sure people get a successful experience. Those are events you monitor through behavioral data. For this company, we were able to determine which persona were getting the most successful experience.

So, it’s really important to combine the demographic and the behavioral together.

And how do you integrate the sales feedback to complete that empirical approach and close the loop?

Usually, marketing teams have a budget, they find leads, qualify them, marked as MQLs and send them to the sales team. Then on the other side, on the sales standpoint, they have SALs (Sales Accepted Leads). They take the marketing leads, they see if they are qualified enough and they accept it or not.

So, it’s super important to have this interface between sales and marketing and for any MQL there should be only two options: either it’s accepted or it’s rejected.

Being able to monitor those rejected is where you are going to gather a great amount of feedback. Feedback that can actually correct historical patterns that could be misleading.

It’s also important to have regular meetings with the sales team and go over the list of those rejected leads and say why they were rejected. That’s where you can optimize your MQLs.

photo credit: Francis Brero